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The article presents the results of a study of the effect of cutting modes of Ti-6Al-4V 
alloy with different grain size, including in the ultrafine-grained state obtained by severe 
plastic deformation, on the roughness of the machined surface using a neural network 
model. A neural network model has been developed that predicts the surface roughness 
of titanium alloy during cutting depending on the grain size and processing modes 
(speed, feed per revolution, and cutting depth). To form a data set of sufficient power for 
training neural networks, a data augmentation method was used, for which an auxiliary 
regression model was built. To select the most rational network architecture, a random 
search in the hyperparameter space was used. Testing the developed neural network 
model on actual data showed an error not exceeding 8.7% according to mean absolute 
percentage error. 
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1. INTRODUCTION 

The machining of titanium alloys by cutting causes signif-
icant problems due to the low durability of cutting tools, 
low cutting speeds, and difficulties in ensuring the re-
quired roughness of the machined surfaces of parts. This 
is due to the fact that most titanium alloys are high-
strength, difficult-to-machine materials containing vari-
ous hard carbides, aluminitrides, and high-strength phases 
in their structure, which cause increased wear of cutting 
tools [1]. The development of new high-strength alloys 
only exacerbates this problem, so finding ways to solve 
them is relevant in various branches of mechanical engi-
neering [2–7]. In recent years, researchers have paid spe-
cial attention to the development of nanostructured and ul-
trafine-grained (UFG) metals and alloys obtained by 
severe plastic deformation (SPD) methods [8,9]. In partic-
ular, UFG titanium alloys have a noticeable advantage 

over industrial coarse-grained alloys in strength and fa-
tigue resistance [10]. In modern aircraft engine manufac-
turing, where titanium alloys are widely used primarily for 
manufacturing critical parts of gas turbine engines (disks, 
bushings, shafts, blades, etc.), manufacturing highly 
loaded parts from UFG titanium alloys will increase the 
strength, reliability, and durability of the product. There-
fore, it is necessary to pay special attention to the choice 
of turning parameters when manufacturing parts from 
UFG alloys in order to obtain the required surface quality 
indicators. 

One of the important criteria of surface quality is its 
roughness, which is an indicator of the integrity of the 
treated surface and quantitatively characterizes the micro-
scopic roughness [11]. High surface roughness can easily 
lead to the development of small cracks and stress concen-
trators, which reduces the performance of titanium billets. 
Therefore, surface roughness control is an important task 
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when turning or grinding. Researchers have carefully stud-
ied the surface integrity of complex surface treatment of ti-
tanium alloys. For example, in Ref. [12], a multi-criteria 
method for optimizing process parameters was proposed to 
reduce surface roughness and improve the material removal 
rate. In Ref. [13], the effect of grinding parameters such as 
cutting speed, feed rate, grinding depth and abrasive size on 
surface integrity was studied experimentally.  

Obviously, the choice of rational cutting modes for 
new materials requires a large amount of experimental re-
search to ensure the specified quality of the treated surface 
of the part. One of the tools that allows reducing the vol-
ume of experimental research, optimizing financial and 
time costs are methods of statistical processing and math-
ematical modeling. Methods of artificial intelligence, in-
cluding methods of machine learning of neural network 
(NN) mathematical models, have been an actively devel-
oping area of digitalization of science and industry in re-
cent years. 

The objective of this work is to evaluate the potential 
for predicting the surface roughness of titanium alloys 
with different grain sizes using a NN model when select-
ing rational cutting modes. Due to the fact that the 
amount of experimental data was insufficient for training 
NNs, the method of augmentation of the training set us-
ing regression analysis of the data was used. For this pur-
pose, auxiliary models obtained by planning multifacto-
rial experiments with statistical processing and 
regression analysis were used. To achieve this goal, the 
following was done: 

1. Statistical processing of experimental data and for-
mation of an augmented training set for NN modeling of 
the cutting process. 

2. Selection of the best neural network architecture for 
constructing a NN approximator that establishes the de-
pendence of surface roughness on cutting modes, taking 
into account the grain size of the processed material. 

3. Analysis of results and verification of the adequacy 
of the NN model. 

4. Development of an algorithm for using the NN model 
in substantiating rational cutting modes for titanium alloys, 

which allows increasing the efficiency of the cutting pro-
cess by reducing the processing time while ensuring the 
specified quality characteristics of the processed surface. 

2. MATERIALS AND PROCESSING MODES 

2.1. Materials 

The material of this study was Grade 5 titanium alloy, ac-
cording to the ASTM B348 standard. The as-received mi-
crostructure of bars with diameter 40 and 20 mm character-
ized by an average grain size of 25 and 10 μm, respectively. 
The chemical composition of alloy: Al—6.6%; V—4.9%; 
Zr—0.02%; Si—0.033%; Fe—0.18%; C—0.007%; O2—
0.17%; N2—0.01%; H2—0.002%; and titanium as the bal-
ance. To produce a Ti-6Al-4V alloy bar 20 mm in diameter 
with an UFG structure (grain size less than ~ 1.0 μm), an 
initial bar was processed via equal-channel angular pressing  
(ECAP) in 4 passes. The Bc route (a sequence of 90-degree 
turns of the workpiece bar) of ECAP processing was ap-
plied. The intersection angle between the channels of an 
ECAP die-set was 120 degrees [14]. ECAP specimens had 
microstructure with grain size about 0.5 μm (Fig. 1). 

Thus, for the experiment we had 3 types of samples 
with different grain sizes: 25 μm—coarse grain (CG), 
10 μm—medium grain (MG) and 0.5 μm—UFG. 

2.2. Cutting Regimes and Surface Roughness 

The cutting experimental regimes for the Ti-6Al-4V bars 
with CG and UFG structures were selected based on the 
Sandvik company’s catalog of cutting conditions [15]. The 
cutting regimes were determined via a combination of the 
main cutting parameters: speed V (m/min), depth t (mm), 
and feed rate S (mm/rev). 

In order to measure the roughness of a surface, a Mar-
Surf PS1 measuring device (Mahr GmbH, Esslingen, Ger-
many) was used, which provides aR , zR , and maxR  data. 
The maximum measurement range was 350 µm (from 
−200 µm to +150 µm). Surface roughness measurements 
were carried out over a length of five millimeters. Four 

Fig. 1. The microstructure of MG (a) and ECAP specimens from Ti-6Al-4V alloy (b,c): (a,b) SEM-image; (c) TEM image. 
(a) (b) (c) 

500 nm 
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measurements were taken on each “zone” in diametrically 
opposite places and one rotation of 90 degrees. The device 
used for measurement was a contact device. 

The experimental data on cutting parameters and 
roughness values are summarized in Table 1 (see Section 
4 below). 

Based on experimental data, regression mathematical 
models were constructed: 
for CG structure 

4.218 0.103 27.119 8.403 0.610
0.191 57.918 ;

aR V S t VS
Vt St

= − + + + −

− −  (1); 

for MG structure 

0.620 0.015 8.780 0.190 0.143
0.005 17.260 ;

aR V S t VS
Vt St

= + + + −

− −  (2) 

for UFG structure 

0.014 0.004 1.252 2.114 0.123
0.021 6.740 .

aR V S t VS
Vt St

= − + + +

− −  (3) 

The average error using the mean absolute percentage 
error (MAPE) metric of the constructed models does not ex-
ceed 2.5%, which allows them to be used in further studies. 

3. DEVELOPMENT OF A NN MODEL 

The obtained experimental data are insufficient for training 
such NN. So the method of augmenting the training set 
based on regression models (1)–(3) was applied [16]. Two 
parameters were fixed in the regression equations for aug-
mentation and the dependences of aR  on the third parameter 
(with a constant step) were found. The obtained data were 
entered into the database. The parameters V, S, t varied in 
the ranges in which the experiments were conducted. The 
results, presented in graphical form, can be seen in Fig. 2. 

Thus, 3,000 examples were obtained, which were sub-
sequently used to train NN models. Of the 3,000 examples, 
80% were used to train the models, 20% were used as a 
validation data set. Testing of the final best model was car-
ried out on experimental data (24 examples). 

To build a NN approximator for a group of titanium 
alloys, it is proposed to use the MLP NN [5]. The vector 
{M, V, S, t} is specified as the network input, and aR  is 
specified as the output. Here M is the approximate grain 
size: 0.5 μm for UFG, 10 μm for MG, and 25 μm for CG. 
The NN was trained taking into account the recommenda-
tions given in Refs. [17–20]. After a random search in the 
space of various NN hyperparameters (number of layers, 
number of neurons, choice of activation function, training 
step), the best architecture with 5 hidden layers was selected. 
The relu activation function was used in each hidden layer, 
the training step was 0.0005. After finding the best model, 

it was retrained for 500 epochs. The results are shown in 
Fig. 3. The graphs show that the training was successful. 

The following results were obtained on the validation 
data: mean average error is 0.0026 µm (0.29% MAPE), 
mean square error is 1.44e–05. It is evident that the trained 
network qualitatively approximates the initial dependen-
cies, which was expected. Note that the excellent results 

(a) 

(b) 

(c) 

Fig. 2. Data obtained using augmentation with linear regression 
models for CG titanium (a), MG titanium (b) and UFG titanium (c). 
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of validation data are explained by collecting them from 
the same distribution as the training data. 

4. APPLICATION OF A NN MODEL 

A comparison of roughness value predictions of the NN 
model with experimental data was carried out (Table 1). 

The NN copes well with predicting roughness values 
for UFG and CG materials, but for MG alloy the discrep-

ancies at two points (in experiments No. 17 and 21) be-
come more noticeable. This can be because the experi-
mental data for MG material were obtained in a fairly wide 
range. 

Using this NN, we can obtain roughness dependencies 
on grain size for various processing parameters (Fig. 4). 

The roughness dependence on grain size changes 
slightly when the cutting depth changes within the studied 
limits (Fig. 4a). In the UFG and MG regions the roughness 
dependence on grain size changes significantly when var-
ying the feed rate: as S increases, so does the roughness 
(Fig. 4b). Moreover, at S = 0.062 mm/rev and at grain 
sizes up to 4.5 μm, the roughness remains virtually un-
changed, which cannot be said at S = 0.104 mm/rev. There 
are virtually no qualitative differences in the CG region. 
Fig. 4c shows that the dependence of roughness on grain 
size with a change in cutting speed changes mainly only 
in the CG and MG regions. In the UFG region such 
changes are practically absent. 

For greater clarity, the dependences of roughness on 
various cutting parameters were analyzed at some fixed 
grain sizes of titanium alloys (Fig. 5). 

Based on the nature of the obtained dependencies of 
surface roughness on cutting modes and grain size, it was 
noted that MG material has a higher viscosity compared to 

Table 1. Comparison of roughness obtained by the NN with experimental data for given input parameters. 

No. Grain size, [μm] V, [m/min] S, [mm/rev] t, [mm] aR -experiment, [µm] aR -prediction, [µm] Difference, [µm] 

0 0.50 48 0.06 0.25 0.424 0.451 0.027 
1 0.50 48 0.06 0.50 0.612 0.562 0.050 
2 0.50 48 0.11 0.25 0.707 0.88 0.173 
3 0.50 48 0.11 0.50 0.790 0.781 0.009 
4 0.50 72 0.06 0.25 0.390 0.404 0.014 
5 0.50 72 0.06 0.50 0.434 0.458 0.025 
6 0.50 72 0.11 0.25 0.800 0.786 0.015 
7 0.50 72 0.11 0.50 0.780 0.766 0.013 
8 25.00 48 0.06 0.25 0.511 0.568 0.058 
9 25.00 48 0.06 0.50 0.406 0.441 0.034 
10 25.00 48 0.11 0.25 0.48 0.534 0.054 
11 25.00 48 0.11 0.50 0.450 0.471 0.021 
12 25.00 72 0.06 0.25 1.445 1.330 0.114 
13 25.00 72 0.06 0.50 0.672 0.685 0.013 
14 25.00 72 0.11 0.25 1.080 1.086 0.006 
15 25.00 72 0.11 0.50 0.784 0.782 0.003 
16 10.00 20.73 0.06 0.05 1.322 1.317 0.005 
17 10.00 56.55 0.06 0.05 1.591 1.189 0.402 
18 10.00 20.73 0.23 0.05 2.187 2.108 0.079 
19 10.00 56.55 0.23 0.05 1.720 1.756 0.036 
20 10.00 20.73 0.06 0.30 1.099 1.277 0.178 
21 10.00 56.55 0.06 0.30 1.563 0.682 0.881 
22 10.00 20.73 0.23 0.30 1.734 1.771 0.037 
23 10.00 56.55 0.23 0.30 2.143 2.102 0.041 

Fig. 3. Neural network training graphs for initial data normalization. 
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samples of the UFG and CG alloys, therefore, the rough-
ness after its processing increases. To control the rough-
ness of the UFG alloy, it is best to vary the feed rate, and 
for titanium materials with coarse and medium grain, it is 
better to use the cutting speed parameter. 

5. CONCLUSION 

Based on experimental roughness data of Ti-6Al-4V alloy 
with different grain sizes, a NN model was built to predict 
the surface after machining, depending on the grain size and 

processing modes (cutting speed, feed rate per revolution, 
cutting depth). Testing the NN model on actual data showed 
an error of no more than 8.7% according to the MAPE met-
ric. The results of this work can be used as practical recom-
mendations when machining titanium alloys with different 
grain sizes. In addition, the obtained NN approximators can 
become the basis for creating an adaptive control system for 
the cutting process of titanium alloys on CNC machines. 
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(a) 

(b) 

(c) 

Fig. 4. Prediction of roughness in dependence on grain size with 
fixed turning parameters (а) V, S, (b) V, t, and (с) S, t. 

(a) 

(b) 

(c) 

Fig. 5. Dependence of roughness on (a) feed rate at fixed V, t and 
grain size 15 μm; (b) on cutting speed at fixed S, t and grain size 
24 μm (c) on cutting depth at fixed V, S with grain size of 24 μm 
based on NN predictions. 
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шероховатость поверхности при различных параметрах резания с 
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Аннотация. В статье представлены результаты исследования влияния режимов резания сплава Ti-6Al-4V с различным раз-
мером зерна, в том числе в ультрамелкозернистом состоянии, полученном методом интенсивной пластической деформации, 
на шероховатость обработанной поверхности с использованием нейросетевой модели. Разработана нейросетевая модель, про-
гнозирующая шероховатость поверхности титанового сплава при резании в зависимости от размера зерна и режимов обра-
ботки (скорость, подача на оборот и глубина резания). Для формирования набора данных достаточной мощности для обуче-
ния нейронных сетей использован метод аугментации данных, для чего построена вспомогательная регрессионная модель. 
Для выбора наиболее рациональной архитектуры сети использован случайный поиск в пространстве гиперпараметров. Тести-
рование разработанной нейросетевой модели на фактических данных показало погрешность, не превышающую 8,7% по дан-
ным средней абсолютной процентной погрешности. 
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